Part Number Hot Search : 
G65SC51 AFB0805H PTZ11B BR20100 IDT74FC BR20100 1GVCDK MA160
Product Description
Full Text Search
 

To Download MC68L300EC16 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MOTOROLA
Order this document by MC68L300EC16/D
SEMICONDUCTOR
TECHNICAL DATA
MC68L300
Technical Supplement 16.78 MHz Electrical Characteristics
Devices in the M68300 Modular Microcontroller Family are built up from a selection of standard functional modules. The MC68331 and MC68332 contain the same central processing unit (CPU32) and system integration module (SIM), and thus have similar electrical characteristics. M68300 devices that operate at 3.3 volts are now available. This publication contains electrical characteristics that supplement the MC68331 User's Manual (MC68331UM/AD) and the MC68332 User's Manual (MC68332UM/AD). MC68L331 and MC68L332 are currently offered for operation in external clock mode only. Enhanced versions of the MC68331 and MC68332 will offer extended VDD operating range, PLL, 5 volt tolerant I/O, and higher frequency.
(c) MOTOROLA INC, 1996
TABLE OF CONTENTS
Maximum Ratings .................................................................................................................................3 MC68L331 Typical Ratings ...................................................................................................................3 MC68L332 Typical Ratings ...................................................................................................................4 Thermal Characteristics ........................................................................................................................4 16.78 MHz DC Characteristics ..............................................................................................................5 16.78 MHz AC Timing ...........................................................................................................................7 Background Debugging Mode Timing .................................................................................................17 ECLK Bus Timing ................................................................................................................................18 QSPI Timing ........................................................................................................................................19 Time Processor Unit Timing ................................................................................................................22 General-Purpose Timer AC Characteristics ........................................................................................23
MOTOROLA 2
MC68L300 MC68L300EC16/D
Table 1 Maximum Ratings
Num 1 2 3 Rating Supply Voltage1,2,3 Input Voltage 1,2,3,4,5,7 Instantaneous Maximum Current Single Pin Limit (all pins)1,3,5,6 Operating Maximum Current Digital Input Disruptive Current3,5,6,7,8 VNEGCLMAP - 0.3 V VPOSCLAMP VDD + 0.3 Operating Temperature Range C Suffix Storage Temperature Range Symbol VDD VIN ID Value - 0.3 to + 6.5 - 0.3 to + 6.5 25 Unit V V mA
4
Iid
- 500 to 500
A
5 6
TA Tstg
TL to TH - 40 to 85 - 55 to 150
C C
NOTES: 1. Permanent damage can occur if maximum ratings are exceeded. Exposure to voltages or currents in excess of recommended values affects device reliability. Device modules may not operate normally while being exposed to electrical extremes. 2. Although sections of the device contain circuitry to protect against damage from high static voltages or electrical fields, take normal precautions to avoid exposure to voltages higher than maximum-rated voltages. 3. This parameter is periodically sampled rather than 100% tested. 4. All pins except TSC. 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. 6. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current. 7. All functional non-supply pins are internally clamped to VSS. All functional pins except EXTAL and XFC are internally clamped to VDD. 8. Total input current for all digital input-only and all digital input/output pins must not exceed 10 mA. Exceeding this limit can cause disruption of normal operation.
Table 2 MC68L331 Typical Ratings
Num 1 2 3 4 5 Supply Voltage Operating Temperature VDD Supply Current RUN LPSTOP, External clock, max fsys Clock Synthesizer Operating Voltage VDDSYN Supply Current External Clock, maximum fsys RAM Standby Current Normal RAM operation Standby operation Power Dissipation Rating Symbol VDD TA IDD VDDSYN IDDSYN ISB PD Value 3.3 25 38 1.0 3.3 1.5 3.0 10 125.0 Unit V C mA mA V mA A A mW
6 7
MC68L300 MC68L300EC16/D
MOTOROLA 3
Table 3 MC68L332 Typical Ratings
Num 1 2 3 4 5 Supply Voltage Operating Temperature VDD Supply Current RUN LPSTOP, External clock, max fsys Clock Synthesizer Operating Voltage VDDSYN Supply Current External Clock, maximum fsys RAM Standby Current Normal RAM operation Standby operation Power Dissipation Rating Symbol VDD TA IDD VDDSYN IDDSYN ISB PD Value 3.3 25 45 1.0 3.3 2.0 3.0 10 148.0 Unit V C mA mA V mA A A mW
6 7
Table 4 Thermal Characteristics
Num 1 Rating Symbol Value 38 49 Unit C/W Thermal Resistance Plastic 132-Pin Surface Mount JA Plastic 144-Pin Surface Mount The average chip-junction temperature (TJ) in C can be obtained from: T = T + ( P x ) (1)
J A D JA
where: TA = Ambient Temperature, C JA= Package Thermal Resistance, Junction-to-Ambient, C/W PD = PINT + PI/O PINT= IDD x VDD, Watts -- Chip Internal Power PI/O= Power Dissipation on Input and Output Pins -- User Determined For most applications PI/O < PINT and can be neglected. An approximate relationship between PD and TJ (if PI/O is neglected) is: P = K / ( T + 273C ) (2)
D J
Solving equations 1 and 2 for K gives: K = P D + ( T A + 273C ) + JA x P
D
2
(3)
where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any value of TA.
MOTOROLA 4
MC68L300 MC68L300EC16/D
Table 5 16.78 MHz DC Characteristics (VDD and VDDSYN = 3.0 to 3.6Vdc, VSS = 0 Vdc, TA = TL to TH)
Num Characteristic Symbol 1 Input High Voltage VIH 2 Input Low Voltage VIL 3 Input Hysteresis1 VHYS Input Leakage Current 2 Iin 4 Vin = VDD or VSS Input-only pins High Impedance (Off-State) Leakage Current2 IOZ 5 Vin = VDD or VSS All input/output and output pins CMOS Output High Voltage2, 3 VOH 6 IOH = -10.0 A Group 1, 2, 4 input/output and all output pins CMOS Output Low Voltage2 VOL 7 IOL = 10.0 A Group 1, 2, 4 input/output and all output pins Output High Voltage2, 3 VOH 8 IOH = -0.4 mA Group 1, 2, 4 input/output and all output pins Output Low Voltage2 IOL = 0.8 mA Group 1 I/O pins CLKOUT, FREEZE/QUOT, IPIPE/DSO 9 VOL IOL = 2.6 mA Group 2 and group 4 I/O pins, CSBOOT, BG/CS1 IOL = 6.0 mA Group 3 10 Three State Control Input High Voltage VIHTSC Data Bus Mode Select Pull-up Current 4 Vin = VIL IMSP 11 Vin = VIH MC68331 VDD Supply Current5 Run IDD 12A LPSTOP, external clock input = max fsys MC68332 VDD Supply Current5 Run IDD 12B LPSTOP, external clock input = max fsys 13 Clock Synthesizer Operating Voltage VDDSYN 14 VDDSYN Supply Current External Clock, maximum fsys MC68332 RAM Standby Voltage Specified VDD applied VDD = VSS MC68332 RAM Standby Current6, 7 Normal RAM operation VDD > VSB - 0.5 V Transient condition Standby operation VDD < VSS + 0.5 V IDDSYN Min 0.7 (VDD) VSS - 0.3 0.5 -2.5 -2.5 VDD -0.2 -- VDD -0.5 Max Unit VDD + 0.3 V V 0.2 (VDD) -- V 2.5 2.5 -- 0.2 -- A A V V V
-- -- -- 2.4 (VDD) -- -8 -- -- -- -- 3.0 -- 0.0 2.7 -- -- -- -- -- -- -- -- -- -- --
0.4 0.4 0.4 9.1 -95 -- 49 2 56 2 3.6 3
V
V A
mA mA mA mA V mA
15
VSB
VDD 3.6 10 3 50 187 212 10 20 90 100 100 100
V
16
VSB - 0.5 V VDD VSS + 0.5 V
ISB
A mA A mW mW pF
17A MC68331 Power Dissipation8 17B MC68332 Power Dissipation Input Capacitance2, 9 All input-only pins 18 All input/output pins Load Capacitance2 Group 1 I/O Pins, CLKOUT, FREEZE/QUOT, IPIPE Group 2 I/O Pins and CSBOOT, BG/CS 19 Group 3 I/O Pins Group 4 I/O Pins
PD PD Cin
CL
pF
MC68L300 MC68L300EC16/D
MOTOROLA 5
NOTES: 1. Applies to: QSM pins IRQ[7:1], RESET, EXTAL, TSC, RMC, BKPT/DSCLK, IFETCH/DSI 2. Input-Only Pins: TSC, BKPT/DSCLK, RXD Output-Only Pins: CSBOOT, BG/CS, CLKOUT, FREEZE/QUOT, IPIPE/DSO Input/Output Pins: Group 1: DATA[15:0], IFETCH/DSI Group 2: ADDR[23:19]/CS[10:6], FC[2:0]/CS[5:3], DSACK[1:0], AVEC, RMC, DS, AS, SIZ[1:0] IRQ[7:1], MODCLK, ADDR[18:0], R/W, BERR, BR/CS0, BGACK/CS2, PCS[3:1], PCS0/SS, TXD Group 3: HALT, RESET Group 4: MISO, MOSI, SCK 3. Does not apply to HALT and RESET because they are open drain pins. Does not apply to Port QS[7:0] (TXD, PCS[3:1], PCS0/SS, SCK, MOSI, MISO) in wired-OR mode. 4. Current measured at maximum system clock frequency. 5. Total operating current is the sum of the appropriate VDD supply and VDDSYN supply current. 6. When VSB is more than 0.3V greater than VDD, current flows between the VSTBY and VDD pins, which causes standby current to increase toward the maximum condition specification. System noise on the VDD and VSTBY pin can contribute to this condition. 7. The SRAM module will not switch into standby mode as long as VSB does not exceed VDD by more than 0.5 volts. The SRAM array cannot be accessed while the module is in standby mode. 8. Power dissipation measured at specified system clock frequency. Power dissipation can be calculated using the expression: PD = 3.6V (IDDSYN + IDD) 9. Input capacitance is periodically sampled rather than 100% tested.
MOTOROLA 6
MC68L300 MC68L300EC16/D
Table 6 16.78 MHz AC Timing (VDD and VDDSYN = 3.0 to 3.6Vdc, VSS = 0 Vdc, TA = TL to TH)1
Num F1 1 1A 1B 2, 3 2A, 3A 2B, 3B 4, 5 4A, 5A 4B, 5B 6 7 8 9 9A 9C 11 12 12A 13 14 14A 14B 15 16 17 18 20 21 22 23 24 25 26 27 27A 28 29 29A 30 30A 31 33 35 37 39 39A 46 Characteristic Frequency of Operation Clock Period ECLK Period External Clock Input Period2 Clock Pulse Width ECLK Pulse Width External Clock Input High/Low Time2 CLKOUT Rise and Fall Time Rise and Fall Time (All outputs except CLKOUT) External Clock Input Rise and Fall Time Clock High to ADDR, FC, RMC, SIZ Valid Clock High to ADDR, Data, FC, RMC,SIZ High Impedance Clock High to ADDR, FC, RMC, SIZ Invalid Clock Low to AS, DS, CS Asserted AS to DS or CS Asserted (Read)3 Clock Low to IFETCH, IPIPE Asserted ADDR, FC, RMC, SIZ Valid to AS, CS, (and DS Read) Asserted Clock Low to AS, DS, CS Negated Clock Low to IFETCH, IPIPE Negated AS, DS, CS Negated to ADDR, FC, SIZ Invalid (Address Hold) AS, CS (and DS Read) Width Asserted DS, CS Width Asserted (Write) AS, CS (and DS Read) Width Asserted (Fast Cycle) AS, DS, CS Width Negated4 Clock High to AS, DS, R/W High Impedance AS, DS, CS Negated to R/W High Clock High to R/W High Clock High to R/W Low R/W High to AS, CS Asserted R/W Low to DS, CS Asserted (Write) Clock High to Data Out Valid Data Out Valid to Negating Edge of AS, CS (Fast Write Cycle) DS, CS Negated to Data Out Invalid (Data Out Hold) Data Out Valid to DS, CS Asserted (Write) Data In Valid to Clock Low (Data Setup) Late BERR, HALT Asserted to Clock Low (Setup Time) AS, DS Negated to DSACK[1:0], BERR, HALT, AVEC Negated DS, CS Negated to Data In Invalid (Data In Hold)5 DS, CS Negated to Data In High Impedance5, 6 CLKOUT Low to Data In Invalid (Fast Cycle Hold)5 CLKOUT Low to Data In High Impedance5 DSACK[1:0] Asserted to Data In Valid7 Clock Low to BG Asserted/Negated BR Asserted to BG Asserted (RMC not Asserted)8 BGACK Asserted to BG Negated BG Width Negated BG Width Asserted R/W Width Asserted (Write or Read) Symbol fsys tcyc tEcyc tXcyc tCW tECW tXCHL tCrf trf tXCrf tCHAV tCHAZx tCHAZn tCLSA tSTSA tCLIA tAVSA tCLSN tCLIN tSNAI tSWA tSWAW tSWDW tSN tCHSZ tSNRN tCHRH tCHRL tRAAA tRASA tCHDO tDVASN tSNDOI tDVSA tDICL tBELCL tSNDN tSNDI tSHDI tCLDI tCLDH tDADI tCLBAN tBRAGA tGAGN tGH tGA tRWA Min -- 59.6 476 59.6 24 236 29.8 -- -- -- 0 0 0 0 -15 2 15 2 2 15 100 45 40 40 -- 15 0 0 15 70 -- 15 15 15 5 20 0 0 -- 10 -- -- -- 1 1 2 1 150 Max Unit 16.78 MHz -- ns -- ns -- ns -- ns -- ns -- ns 7 ns 8 ns 4 ns 29 ns 59 ns -- ns 25 ns 15 ns 22 ns -- ns 29 ns 29 ns -- ns -- ns -- ns -- ns -- ns 59 ns -- ns 29 ns 29 ns -- ns -- ns 29 ns -- ns -- ns -- ns -- ns -- ns 80 ns -- ns 55 ns -- ns 90 ns 50 ns 29 ns -- tcyc 2 tcyc -- tcyc -- tcyc -- ns
MC68L300 MC68L300EC16/D
MOTOROLA 7
Table 6 16.78 MHz AC Timing (Continued) (VDD and VDDSYN = 3.0 to 3.6Vdc, VSS = 0 Vdc, TA = TL to TH)1
Num 46A 47A 47B 48 53 54 55 70 71 72 73 74 75 76 77 78 Characteristic R/W Width Asserted (Fast Write or Read Cycle) Asynchronous Input Setup Time BR, BGACK, DSACK[1:0], BERR, AVEC, HALT Asynchronous Input Hold Time DSACK[1:0] Asserted to BERR, HALT Asserted9 Data Out Hold from Clock High Clock High to Data Out High Impedance R/W Asserted to Data Bus Impedance Change Clock Low to Data Bus Driven (Show Cycle) Data Setup Time to Clock Low (Show Cycle) Data Hold from Clock Low (Show Cycle) BKPT Input Setup Time BKPT Input Hold Time Mode Select Setup Time Mode Select Hold Time RESET Assertion Time10 RESET Rise Time11,12 Symbol tRWAS tAIST tAIHT tDABA tDOCH tCHDH tRADC tSCLDD tSCLDS tSCLDH tBKST tBKHT tMSS tMSH tRSTA tRSTR Min 90 5 15 -- 0 -- 40 0 15 10 15 10 20 0 4 -- Max -- -- -- 30 -- 28 -- 29 -- -- -- -- -- -- -- 10 Unit ns ns ns ns ns ns ns ns ns ns ns ns tcyc ns tcyc tcyc
NOTES: 1. All AC timing is shown with respect to 20% VDD and 70% VDD levels unless otherwise noted. 2. When an external clock is used, minimum high and low times are based on a 50% duty cycle. The minimum allowable tXcyc period is reduced when the duty cycle of the external clock varies. The relationship between external clock input duty cycle and minimum tXcyc is expressed: Minimum tXcyc period = minimum tXCHL / (50% - external clock input duty cycle tolerance). 3. Specification 9A is the worst-case skew between AS and DS or CS. The amount of skew depends on the relative loading of these signals. When loads are kept within specified limits, skew will not cause AS and DS to fall outside the limits shown in specification 9. 4. If multiple chip selects are used, CS width negated (specification 15) applies to the time from the negation of a heavily loaded chip select to the assertion of a lightly loaded chip select. The CS width negated specification between multiple chip selects does not apply to chip selects being used for synchronous ECLK cycles. 5. Hold times are specified with respect to DS or CS on asynchronous reads and with respect to CLKOUT on fast cycle reads. The user is free to use either hold time. 6. Maximum value is equal to (tcyc / 2) + 25 ns. 7. If the asynchronous setup time (specification 47A) requirements are satisfied, the DSACK[1:0] low to data setup time (specification 31) and DSACK[1:0] low to BERR low setup time (specification 48) can be ignored. The data must only satisfy the data-in to clock low setup time (specification 27) for the following clock cycle. BERR must satisfy only the late BERR low to clock low setup time (specification 27A) for the following clock cycle. 8. To ensure coherency during every operand transfer, BG is not asserted in response to BR until after all cycles of the current operand transfer are complete. 9. In the absence of DSACK[1:0], BERR is an asynchronous input using the asynchronous setup time (specification 47A). 10. After external RESET negation is detected, a short transition period (approximately 2) tcyc elapses, then the SIM drives RESET low for 512 tcyc. 11. External assertion of the RESET input can overlap internally-generated resets. To insure that an external reset is recognized in all cases, RESET must be asserted for at least 590 CLKOUT cycles. 12. External logic must pull RESET high during this period in order for normal MCU operation to begin.
MOTOROLA 8
MC68L300 MC68L300EC16/D
1 4 CLKOUT 2 3
5
68300 CLKOUT TIM
Figure 1 CLKOUT Output Timing Diagram
1B 4B EXTAL 2B 3B
5B
NOTE: TIMING SHOWN WITH RESPECT TO 20% AND 70% VDD. PULSE WIDTH SHOWN WITH RESPECT TO 50% VDD.
68300 EXT CLK INPUT TIM
Figure 2 External Clock Input Timing Diagram
1A 4A ECLK 2A 3A
5A
NOTE: TIMING SHOWN WITH RESPECT TO 20% AND 70% VDD.
68300 ECLK OUTPUT TIM
Figure 3 ECLK Output Timing Diagram
MC68L300 MC68L300EC16/D
MOTOROLA 9
S0 CLKOUT
S1
S2
S3
S4
S5
6 ADDR[23:20]
8
FC[2:0]
SIZ[1:0] 11 AS 9 DS 9A CS 17 18 R/W 46 21 20 12 13 14 15
DSACK0 47A DSACK1 31 DATA[15:0] 27 29A BERR 48 HALT 9C 12A 27A 29 28
12A
IFETCH 73 BKPT 47A ASYNCHRONOUS INPUTS 47B 74
68300 RD CYC TIM
Figure 4 Read Cycle Timing Diagram
MOTOROLA 10
MC68L300 MC68L300EC16/D
S0 CLKOUT 6 ADDR[23:20]
S1
S2
S3
S4
S5
8
FC[2:0]
SIZ[1:0] 11 AS 9 DS 21 9 CS 20 R/W 46 DSACK0 47A DSACK1 55 DATA[15:0] 23 BERR 48 27A HALT 74 73 BKPT 26 54 53 25 28 22 14A 17 12 14 15
13
68300 WR CYC TIM
Figure 5 Write Cycle Timing Diagram
MC68L300 MC68L300EC16/D
MOTOROLA 11
S0 CLKOUT 6 ADDR[23:0]
S1
S4
S5
S0
8
FC[2:0]
SIZ[1:0] 14B AS 9 DS 12
CS 20 18 R/W 46A
27
30 30A
DATA[15:0] 73 29A 29
BKPT 74
68300 FAST RD CYC TIM
Figure 6 Fast Termination Read Cycle Timing Diagram
MOTOROLA 12
MC68L300 MC68L300EC16/D
S0 CLKOUT 6 ADDR[23:0]
S1
S4
S5
S0
8
FC[2:0]
SIZ[1:0] 14B AS 9 DS 12
CS 20 R/W 23 DATA[15:0] 73 25 24 18 46A
BKPT 74
68300 FAST WR CYC TIM
Figure 7 Fast Termination Write Cycle Timing Diagram
MC68L300 MC68L300EC16/D
MOTOROLA 13
S0 CLKOUT
S1
S2
S3
S4
S5
S98
A5
A5
A2
ADDR[23:0] 7 DATA[15:0]
AS 16
DS
R/W
DSACK0
DSACK1 47A BR 35 BG 33 33 BGACK 37 39A
68300 BUS ARB TIM
Figure 8 Bus Arbitration Timing Diagram -- Active Bus Case
MOTOROLA 14
MC68L300 MC68L300EC16/D
A0 CLKOUT
A5
A5
A2
A3
A0
ADDR[23:0]
DATA[15:0]
AS 47A 47A
BR 35 BG 33 33 47A 37
BGACK
68300 BUS ARB TIM IDLE
Figure 9 Bus Arbitration Timing Diagram -- Idle Bus Case
S0 CLKOUT 6 ADDR[23:0] 18 R/W 20 AS
S41
S42
S43
S0
S1
S2
8
9
12 15
DS 71 70 DATA[15:0] 73 74 BKPT SHOW CYCLE START OF EXTERNAL CYCLE 72
NOTE: Show cycles can stretch during clock phase S42 when bus accesses take longer than two cycles due to IMB module wait-state insertion.
68300 SHW CYC TIM
Figure 10 Show Cycle Timing Diagram
MC68L300 MC68L300EC16/D
MOTOROLA 15
S0 CLKOUT 6 ADDR[23:0]
S1
S2
S3
S4
S5
S0
S1
S2
S3
S4
S5
6
8
FC[2:0]
SIZ[1:0] 11 AS 9 DS 21 CS 18 R/W 46 29 DATA[15:0] 27 29A 23 53 54 55 25 20 46 14A 18 12 9 9 14 11 14 13
15
17 21 12
17
68300 CHIP SEL TIM
Figure 11 Chip-Select Timing Diagram
77 RESET 75
78
DATA[15:0] 76
68300 RST/MODE SEL TIM
Figure 12 Reset and Mode Select Timing Diagram
MOTOROLA 16
MC68L300 MC68L300EC16/D
Table 7 Background Debugging Mode Timing (VDD and VDDSYN = 3.0 to 3.6Vdc, VSS = 0 Vdc, TA = TL to TH)1
Num B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 DSI Input Setup Time DSI Input Hold Time DSCLK Setup Time DSCLK Hold Time DSO Delay Time DSCLK Cycle Time CLKOUT Low to FREEZE Asserted/Negated CLKOUT High to IFETCH High Impedance CLKOUT High to IFETCH Valid DSCLK Low Time Characteristic Symbol tDSISU tDSIH tDSCSU tDSCH tDSOD tDSCCYC tFRZAN tIPZ tIP tDSCLO Min 15 10 15 10 -- 2 -- -- -- 1 Max -- -- -- -- 25 -- 50 50 50 -- Unit ns ns ns ns ns tcyc ns ns ns tcyc
NOTES: 1. All AC timing is shown with respect to 20% VDD and 70% VDD levels unless otherwise noted.
CLKOUT
FREEZE B3 B2 BKPT/DSCLK B9 B5 B1 B0 IFETCH/DSI
B4 IPIPE/DSO
68300 BKGD DBM SER COM TIM
Figure 13 BDM Serial Communication Timing Diagram
CLKOUT
B6 FREEZE B7 IFETCH/DSI B8
68300 BDM FRZ TIM
B6
Figure 14 BDM Freeze Assertion Timing Diagram
MC68L300 MC68L300EC16/D
MOTOROLA 17
Table 8 ECLK Bus Timing (VDD and VDDSYN = 3.0 to 3.6Vdc, VSS = 0 Vdc, TA = TL to TH)1
Num E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 ECLK Low to Address Characteristic Valid2 ECLK Low to Address Hold ECLK Low to CS Valid (CS Delay) ECLK Low to CS Hold CS Negated Width Read Data Setup Time Read Data Hold Time ECLK Low to Data High Impedance CS Negated to Data Hold (Read) CS Negated to Data High Impedance ECLK Low to Data Valid (Write) ECLK Low to Data Hold (Write) Address Access Time Address Setup Time (Read)3 Chip-Select Access Time (Read)4 Symbol tEAD tEAH tECSD tECSH tECSN tEDSR tEDHR tEDHZ tECDH tECDZ tEDDW tEDHW tEACC tEACS tEAS Min -- 15 -- 15 30 30 5 -- 0 -- -- 15 386 296 1/2 Max 60 -- 150 -- -- -- -- 60 -- 1 2 -- -- -- -- Unit ns ns ns ns ns ns ns ns ns tcyc tcyc ns ns ns tcyc
NOTES: 1. All AC timing is shown with respect to 20% VDD and 70% VDD levels unless otherwise noted. 2. When previous bus cycle is not an ECLK cycle, the address may be valid before ECLK goes low. 3. Address access time = tEcyc - tEAD - tEDSR. 4. Chip select access time = tEcyc - tECSD - tEDSR.
CLKOUT 2A ECLK 1A 3A
R/W E1 ADDR[23:0] E3 CS E15 E13 DATA[15:0] READ E7 E8 E11 DATA[15:0] WRITE E12
68300 E CYCLE TIM
E2
E14 E6
E4
E5
E9 WRITE
E10
Figure 15 ECLK Timing Diagram
MOTOROLA 18
MC68L300 MC68L300EC16/D
Table 9 QSPI Timing (VDD and VDDSYN = 3.0 to 3.6Vdc, VSS = 0 Vdc, TA = TL to TH , 100 pF load on all QSPI pins)1
Num 1 Function Operating Frequency Master Slave Cycle Time Master Slave Enable Lead Time Master Slave Enable Lag Time Master Slave Clock (SCK) High or Low Time Master Slave2 Sequential Transfer Delay Master Slave (Does Not Require Deselect) Data Setup Time (Inputs) Master Slave Data Hold Time (Inputs) Master Slave Slave Access Time Slave MISO Disable Time Data Valid (after SCK Edge) Master Slave Data Hold Time (Outputs) Master Slave Rise Time Input Output Fall Time Input Output Symbol fop Min DC DC 4 4 2 2 -- 2 2 tcyc - 60 2 tcyc - n 17 13 30 20 0 20 -- -- -- -- 0 0 -- -- -- -- Max 1/4 1/4 510 -- 128 -- 1/2 -- 255 tcyc -- 8192 -- -- -- -- -- 1 2 50 50 -- -- 2 30 2 30 Unit fsys fsys tcyc tcyc tcyc tcyc SCK tcyc ns ns tcyc tcyc ns ns ns ns tcyc tcyc ns ns ns ns s ns s ns
2
tqcyc
3
tlead
4
tlag
5
tsw
6
ttd
7
tsu
8 9 10 11
thi ta tdis tv
12
tho
13
tri tro tfi tfo
14
NOTES: 1. All AC timing is shown with respect to 20% VDD and 70% VDD levels unless otherwise noted. 2. For high time, n = External SCK rise time; for low time, n = External SCK fall time.
MC68L300 MC68L300EC16/D
MOTOROLA 19
3 PCS[3:0] OUTPUT 13 12 SCK CPOL=0 OUTPUT 4 SCK CPOL=1 OUTPUT 6 7 MISO INPUT MSB IN DATA LSB IN 4 12 13 1 5
2
MSB IN
11 MOSI OUTPUT
10 DATA LSB OUT PORT DATA 12 MSB OUT
PD 13
MSB OUT
68300 QSPI MAST CPHA0
Figure 16 QSPI Timing -- Master, CPHA = 0
3 PCS[3:0] OUTPUT 13 1 SCK CPOL=0 OUTPUT 4 SCK CPOL=1 OUTPUT 4 12 13 6 MISO INPUT MSB IN DATA LSB IN 1 7 12 5
2
MSB
11 MOSI OUTPUT
10 DATA LSB OUT PORT DATA 12 MSB
PORT DATA 13
MSB OUT
68300 QSPI MAST CPHA1
Figure 17 QSPI Timing -- Master, CPHA = 1
MOTOROLA 20
MC68L300 MC68L300EC16/D
3 SS INPUT 13 12 SCK CPOL=0 INPUT 4 SCK CPOL=1 INPUT 4 8 MISO OUTPUT MSB OUT 7 6 MOSI INPUT MSB IN DATA LSB IN 11 DATA 12 13 10 LSB OUT 11 9 PD 13 1 5
2
MSB OUT
MSB IN
68300 QSPI SLV CPHA0
Figure 18 QSPI Timing -- Slave, CPHA = 0
SS INPUT 5 1 4 SCK CPOL=0 INPUT 2 SCK CPOL=1 INPUT 12 10 8 MISO OUTPUT PD MSB OUT 7 6 MOSI INPUT MSB IN DATA LSB IN 10 DATA 13 11 SLAVE LSB OUT 12 9 4 3 12 13
PD
68300 QSPI SLV CPHA1
Figure 19 QSPI Timing -- Slave, CPHA = 1
MC68L300 MC68L300EC16/D
MOTOROLA 21
Table 10 Time Processor Unit Timing (VDD and VDDA = 3.0 to 3.6Vdc, VSS = 0 Vdc, TA = TL to TH)1
Num 1 2 3 Parameter CLKOUT High to TPU Output Channel TPU Input Channel Pulse Width Valid2, 3, 4 CLKOUT High to TPU Output Channel Hold Symbol tCHTOV tCHTOH tTIPW Min 2 0 4 Max 23 20 -- Unit ns ns tcyc
NOTES: 1. AC Timing is shown with respect to 20% VDD and 70% VDD levels. 2. Timing not valid for external T2CLK input. 3. Maximum load capacitance for CLKOUT pin is 90 pF. 4. Maximum load capacitance for TPU output pins is 100 pF.
CLKOUT 1 TPU OUTPUT 2
TPU INPUT
3
TPU I/O TIM
Figure 20 TPU Timing Diagram
MOTOROLA 22
MC68L300 MC68L300EC16/D
Table 11 General-Purpose Timer AC Characteristics
Num 1 2 3 4 5 6 7 8 PCLK Frequency Pulse Width Input Capture PWM Resolution IC/OC Resolution PCLK Width (PWM) PCLK Width (IC/OC) PAI Pulse Width Parameter Operating Frequency Symbol Fclock Fpclk PWtim -- -- -- -- -- Min 0 0 2/Fclock 2/Fclock 4/Fclock 4/Fclock 4/Fclock 2/Fclock Max 16.77 1/4 Fclock -- -- -- -- -- -- Unit MHz MHz -- -- -- -- -- --
PHI1*
EXT PIN
A
B
NOTE: 1. A = Input signal after the synchronizer 2. B = "A" after the digital filter 3. *PHI1 is the same frequency as system clock; however, it does not have the same timing.
Figure 21 Input Signal Conditioner Timing
MC68L300 MC68L300EC16/D
MOTOROLA 23
PHI1*
PAEN
EXT PIN (PAI)
A
B
PACNT
$FF
$00
PAIF
PAOVF
NOTE: 1. 2. 3. 4. 5.
A = PAI signal after the synchronizer B = "A" after the digital filter *PHI1 is the same frequency as system clock; however, it does not have the same timing. The external leading edge causes the pulse accumulator to increment and the PAIF flag to be set. The counter transition from $FF to $00 causes the PAOVF flag to be set.
Figure 22 Pulse Accumulator -- Event Counting Mode (Leading Edge)
MOTOROLA 24
MC68L300 MC68L300EC16/D
PHI1*
PHI1*/4
PAEN
EXT PIN (PAI)
A
B
PACNT
$77
$78
PAIF
NOTE: 1. 2. 3. 4. 5.
A = PAI signal after the synchronizer B = "A" after the digital filter PHI1*/4 clocks PACNT when GT-PAIF is asserted. PAIF is asserted when PAI is negated. *PHI1 has the same frequency as the system clock; however, it does not have the same timing.
Figure 23 Pulse Accumulator -- Gated Mode (Count While Pin High)
MC68L300 MC68L300EC16/D
MOTOROLA 25
PHI1*
PHI1*/4
EXT PIN (PAI)
TCNT
$FFFE
$FFFF
$0000
PACNT
$77
$78
NOTE: 1. TCNT counts as a result of PHI1*/4; PACNT counts when TCNT overflows from $FFFF to $0000 and the conditioned PAI signal is asserted. 2. *PHI1 has the same frequency as the system clock; however, it does not have the same timing.
Figure 24 Pulse Accumulator -- Using TOF as Gated Mode Clock
PHI1*
PHI1*/2
PWMCNT (7:0)
$FF
$00
$01
$02
EXT PIN (PMWx)
NOTE: 1. *PAI1 is the same frequency as the system clock; however, it does not have the same timing. 2. When the counter rolls over from $FF to $00, the PWM pin is set to logic level one. 3. When the counter equals the PWM register, the PWM pin is cleared to a logic level zero.
Figure 25 PWMx (PWMx Register = 01, Fast Mode)
MOTOROLA 26
MC68L300 MC68L300EC16/D
PHI1*
COMPARE/ CAPTURE CLOCK
OCx COMPARE REGISTER
$0102
TCNT
$0101
$0102
$0103
OCx MATCH
OCxF
EXT PIN (OCx) NOTE: 1. When the TCNT matches the OCx compare register, the OCxF flag is set followed by the OCx pin changing state. 2. *PAI1 is the same frequency as the system clock; however, it does not have the same timing.
Figure 26 Output Compare (Toggle Pin State)
MC68L300 MC68L300EC16/D
MOTOROLA 27
PHI1*
COMPARE/ CAPTURE CLOCK
TCNT
$0101
$0102
ICx EXTERNAL PIN
CONDITIONED INPUT
ICx CAPTURE REGISTER
$0102
ICxF
NOTE: 1. The conditioned input signal causes the current value of the TCNT to be latched by the ICx capture register. The ICxF flag is set at the same time. 2. *PAI1 is the same frequency as the system clock; however, it does not have the same timing.
Figure 27 Input Capture (Capture on Rising Edge)
MOTOROLA 28
MC68L300 MC68L300EC16/D
BUS STATES PHI1*
PDDRx
EXTERNAL PIN (INPUT)
CONDITIONED INPUT
PDRx
INTERNAL DATA BUS
NEW DATA
IMB READ CYCLE (READ BIT AS 1)
IMB READ CYCLE (READ BIT AS 1)
IMB READ CYCLE (READ BIT AS 0)
NOTE: 1. *PAI1 is the same frequency as the system clock; however, it does not have the same timing.
Figure 28 General-Purpose Input
MC68L300 MC68L300EC16/D
MOTOROLA 29
BUS STATES PHI1*
B1
B2
B3
B4
B1
B2
B3
B4
B1
B2
B3
B4
B1
B2
B3
B4
INTERNAL DATA BUS
PDR
PDRx
EXTERNAL PIN (OUTPUT)
CONDITIONED INPUT
ICx COMPARE REGISTER
$0102
PDDRX 0
TCNT IMB WRITE CYCLE
$0101 IMB WRITE CYCLE
$0102
NOTE: 1. *PAI1 is the same frequency as the system clock; however, it does not have the same timing. 2. When the bit value is driven on the pin, the input circuit sees the signal. After it is conditioned it causes the contents of the TCNT to be latched into the ICx compare register.
Figure 29 General-Purpose Output (Causes Input Capture)
MOTOROLA 30
MC68L300 MC68L300EC16/D
BUS STATES PHI1*
B1
B2
B3
B4
B1
B2
B3
B4
B1
B2
B3
B4
B1
B2
B3
B4
COMPARE/ CAPTURE CLOCK
TCNT
$0101
$0102
$0103
TOCx
$AOF3
FOCx
OCxF (NOT SET)
EXTERNAL PIN (OCx) IMB WRITE CYCLE NOTE: 1. *PAI1 is the same frequency as the system clock; however, it does not have the same timing.
Figure 30 Force Compare (CLEAR)
MC68L300 MC68L300EC16/D
MOTOROLA 31
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. MCUinit, MCUasm, MCUdebug, and RTEK are trademarks of Motorola, Inc. M O T O R O L A and ! are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447 JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315 ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
M


▲Up To Search▲   

 
Price & Availability of MC68L300EC16

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X